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ABSTRACT

In the present paper we study some properties of solutions of biharmonic problems. Namely, we study the boundary
value problem Navier and a boundary problem for the biharmonic equation. For solving these biharmonic problems
with application, in particular, to radar imaging, we need to solve boundary value problems Dirichlet and Neumann
for the Poisson equation using the scattering model. In order to select suitable solutions, we solve the Poisson
equation with the corresponding boundary conditions Dirichlet and Neumann, that is, some criterion function is
minimized in the Sobolev norms. Under appropriate smoothness assumptions, these problems may be reformulated
as boundary value problems for the biharmonic equation.
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1. INTRODUCTION
Let 2 C E™, n = 2, be a bounded Lipschitz domain with connected boundary M), and
a0 = 11 is the closure of 1. We consider the following boundary wvalue problems for the

biharmonic equation in Lipschitz domains:
4 j
A= F rel} (1)

with the Navier boundary conditions
U= on 82, 2)
gAu+(l—0)22 =g on dil,
. e
or with the following (R. Farwig) boundary conditions

r:.F." :
dAu _ hio on A2,

s

i :
= = K,
{ 11 on o6 (3)
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where 1+ is the outer unit normal vector to the domain with the Lipschitz boundary 0. The

coefficient « is a constant known as the Poisson ratio, ﬂITl < < 1.

For n = 2, these problems and also the Neumann problem are related to the study of the
transverse vibrations of a thin plate with a free edge and which occupies at rest a planar region
of shape 49}, The coefficient o represents the Poisson’s ratio of the material that the plate is
made of. For more details on the physical interpretation of the Neumann problem and on the
Poisson’s ratio o, we refer, for example, to [3]. Note the paper [4], where the author studies the
dependence of the vibrational modes of a plate subject to homogeneous boundary conditions
upon the Polsson’s ratio 0 < o < %, providing also a perturbation formula for the frequencies
as functions of the Poisson’s coefficient.

Note that standard elliptic regularity results are available in [7]. This monograph covers
higher order linear and nonlinear elliptic boundary value problems. mainly with the biharmonic
(polyharmonic) operator as leading principal part. Underlying models and, in particular, the
role of different houndary conditions are explained in detail. As for linear problems. after a brief
summary of the existence theory and LF and Schauder estimates. the focus is on positivity. The
required kernel estimates are also presented in detail.

In [6] and [7]. the spectral and positivity preserving properties for the inverse of the
biharmonic operator under Steklov and Steklov-type boundary conditions are studied. These are
connected with the first Steklov eigenvalue, It is shown that the positivity preserving property
is guite sensitive to the parameter involved in the boundary condition.

Elliptic problems with parameters in the boundary conditions are called Steklov problems
from their first appearance in [30]. In the case of the biharmonic operator, these conditions were
first considered in [2], [11], who studied the isoperimetric properties of the first eigenvalue.

In [5], the boundary value problems for the biharmonic equation and the Stokes system are
studied in a half space. and, using the Schwartz reflection principle in weighted L7 -space the
unigueness of solutions of the Stokes system or the biharmonic equation is proved.

Boundary value problems for a biharmonic (polyharmonic) equation and for the elasticity
system in unbounded domains are studied in [12]- [21]. in which the condition of the boundedness
of the following weighted Dirichlet integral of solution is finite, namely

f |z|*|6u|* dx < 00, a€R,
LY.

where a € R is a fixed number and |#u|* denotes the Frobenius norm of the Hessian matrix of
u. In particular, in [12]- [21] has been studied the dimension of the space of the solutions to
the boundary value problems for a biharmonic (polvharmonic) equation and for the elasticity
system, providing explicit formulas which depends on n and a.

In [B]- [10], generalizations of the Hardy inequality were established for bounded and for a
wide class of unbounded domains, and applied these to investigate boundary value problems for
elliptic equations and systems. In particular, the problems of the existence, the unigueness, the
stability and the asymptotic expansions of solutions of boundary value problems were studied.

Notation: (5°(12) is the space of infinitely differentiable functions in @ with compact
support in 2; H™(Q) is the Sobolev space obtained by the completion of €'*({1) with respect
to the norm

1/2
[|lu; H™ ()| = > |9%ultdx ,m=1,2,
0 lal=m
where 8° = @l 9z .. 828, a = (@y.....0,) is a multi-index, a; > 0 are integers, and

T
ler] = ap + - - + g qu (1) is the space obtained by the completion of C§7({2) with respect to
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the norm ||u; H™(02)||; I}gﬂ. (1Y) is the space obtained by the completion of C7°(£2) with respect
to the family of semi-norms

1/2
llu; H™(2 1 Bo(R))|| = > |8%uf? de

By R) lels=m

for all open balls Bp(R) := {z: |x| < R} in R" for which §}n Bp(R) # 0. Finally H'/2(51)
is the usual trace space on the boundary and H—Y2(3Q) is its dual (see, for ex.. [1]).
If we set o = 1, for the biharmonic equation the problems reads, with the Navier boundary

conditions
qE = Q’l Ol 5‘!:!, {_.1_]
Aun = g on {1,

or with the following (R. Farwig) boundary conditions
% = i3 on N, (5)
% = hn on L x

Definition 1. A solution of the biharmonic equation (1) in £ is a function u € H2(02) such
that, for every function ¢ € C57(02), the following integral identity holds:

f&u&gﬁdt:ffa;:dr._ f e LE(). (6)
0 e

Definition 2. A function u is a solution of the Navier problem (1),(4) with g; = g, = 0, if
1

u € H3{Q)N H (€) such that the integral identity (6) holds for every funetion p € CF°().

Definition 3. A function u is a solution of the Farwig problem (1).(5) with hy = ha = 0, if

2 2
uEH (£2), du/Or = 0 on I, and the integral identity (6) holds for every function el (R™)
such that dp/dv =0 on J1).

2. SCATERING MODEL

In the section we derive the mathematical model used for describing the radar process. In our
parametrization the unknown is the height funetion H. As will be shown the height function
is determined in two steps. In the first step £(H), with £ a certain second-order differential
operator, is determined. After retrieving H the equation £(H) = [ must be solved. To a
good approximation the operator £ can be replaced by the Laplacian. So the second step
simply consists of solving the Poisson equation over some smooth bounded domain, usually a
rectangular region in the plane. The problem here is that no natural boundary conditions are
available.

Here we will briefly discuss the mathematical inverse problem to be resolved in order to
recover the ground topography height function from radar data. First cylindrical coordinates
{7, ¢, z) are introduced according to Fig. 1, where it is understood that the aircraft is fyving at
a constant speed along the z-axis. Further r denotes the distance from a point on the ground
surface to the z-axis and ¢ is the angle between radius vector and a horizontal plane through the
z-axis. Then the ground surface may be described by a lunction H(r, z) through the equation

—H[:i" L — (7)
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Z

H{r, z) = arclength

Figure 1. The ground surface measured at a fixed aireraft position.

riga)

o e e e s

Hﬁ}]l!('r_ el T
aircraft
{0, 2) ™=

Figure 2. The measuring geometry as seen from ahove.

When r is large, —H(r, z) is approximately a Cartesian height function. Fig. 2 shows a top
view of the same scene. We have also indicated an aspect vector from the aircraft to some point
on the ground, forming an angle # with a vertical plane through the aireraft. Normalized to
unit length, the aspect vector is denoted by fi. Accordingly

= cosfr{g) +sind z (8)

Here #{¢) denotes the eylindrical unit basis vector corresponding to the r-coordinate for the
ground point as shown in the Fig. 2. For a point on the ground surface with coordinates (v, @, 2)
we obtain, from Eq. (7). the following expression for the ground surface normal m,

ﬁ;::grad(M—g):Mf+ll?—Hé—% . (9)

e

ar r Oz

Let i denote the normalized normal. Then

Fa & " 2 2
fit o fi = (TCG&E% —|—Siu#%—f) 4 \/l—l— (@) + (Z—f) . (10)

Note that (r,y, z) in Eq. (10) are related to the ground surface point and not to the position
of the aircrafi.

Let (zp.0) be a position of the aircraft and R the distance to some point on the surface.
According to Fig. 3 the coordinates (r, z) are then equal to (zg + Rsinf, Reos#). Nexi, to
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O R, za)

Figure 3. The coordinate system used to describe an infinitesimal surface element, dS.

obtain a scattering model we will assume that the reflectivity from a ground surface element
(see Fig. 4) is
1o il

==

dR df. (11)

From Fig. 4, where a vertical plane thmugh {zp,0) (the aircraft) and the ground point
(zo + Rsin#, R cosd) is displaved, we conelude that the solid angle Jf2 under which the surface
element 45 is seen from the antenna is approximately

dlt cos o Rd di o d
72 == I i

In expression (11) we are consequently assuming that the local reflectivity is proportional to the
solid angle occupied by the infinitesimal surface element d.5. The total reflected signal G R, zp)
from all points at a distance /i from the antenna may now be obtained by integration over the
circle C(R,zp) = {(r,z) : (z — z0)®> + r? = R?} in Fig. 3.

" 1o Reosd, Rsind
G(R. z0)dR — (‘/’ it a fi(zp + R cos sin }dﬂd}?
I n
ie. -
RG(R, zp) = f:f 1it o fizg + R cos O, Rsin @)d. (12)
—ar

Assuming that i o i1 is small Eq. (10) may be replaced by

mOH—]"(‘DQ-H "JI ] nﬂ?—H.
& Oz

By inserting this into Eq. (12) we get, after multiplying by R,

R2G(R, z0) :cf (r Rcmﬂ@
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it
aireraft

Figure 4. The infinitesimal surface element, d5, as it is seen from the aircraft.

Using the parametrization
z =z + Rsinf, r = Reosd,

this may be rewritten as a curve integral over C'(R, zg), with dz = R cos 0d0 and dr = — R sin 8d6,
ad(H /v H
R2G(R, =) = crf (AL B8 (13)
C{R.zq) al“ &
By applyving Green's formula we get
R2G(R. z) = r:f/ L(H)(r, z)dzdr, (14)
DR zy)

where [ is the disc,
D(R, 2z0) = {(r,2) : (z — 20)* +r* < R?}
and 3 5 o2
i ¢ .

The problem of finding the height function H from radar data G{r, z) may now be divided
into two parts:

(a) First solve the integral equation (14) for £(H)(r,z) = f(r,z).

(h) Next solve the partial differential equation

L(H)=f (16)
for H. We note that if r is large and if rh o is small it is reasonable to make the approximation

°H PH

£(H) =~ — AH

= B
so that Eq. (16) becomes Poisson's equation. To consider the first problem (a), both members

in Eq. (14) are differentiated with respect to . Then we get

1 d =
— —(R2G(R, =z =E.’f S(H) zp + Reos e, Rsine)de,
RaRBG(R 20) =c [ S(H)(z )
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where the right-hand side is proportional to the average of S(H) over the cirele C'(R,z). In
[2] an explicit solution is given for this problem of recovering the function £(H)(r, z) when the
average of S(H) is known for all circles (R, zp) with center on the z-axis and with arbitrary
radius . The solution formula is

,EI:H]I':RF}I:UJM'} m~ e [-I%Ef%?‘ R*G(r, .:j}] [E‘H"](U.. [w? + a?). (17)
Here the notation (F, F) means that we have taken the Fourier transform with respect to both
the variables and (F, Hp) means that we have taken Fourier transform with respect to the first
variable and the Hankel-zero transform with respect to the second. After some calculations
Eq. (17) may be rewritten

S(H)FF) (g, w) ~ |w|Vw? + o2[RG(r, 2)]FH) (0, \/u? + 02). (18)

Formula (18) may now be used in order to recover the function £(H) in spatial coordinates.
Of course, approximating S(H) by AH we could rewrite Eq. (18) as

ﬁ[ﬁc{r. 2 FH (o, ? + a?), (19)

where H; denotes that we have taken the Hankel-one transform with respect to the second
variable. Then we could obtain H directly by a two timensional Fourier transform. Howewver,
our solution might be expected to have errors caused by, e.g. noisy radar data and errors cansed
by the particular numerical implementation of the inversion formula (17) (or Eqg. (18)) and
therefore we would rather prefer to divide the solution procedure into the two steps described
above and to use the second step, the solution of Poisson’s equation, so that we perform some
kind of regularization of the final solution. Note also that by using Eq.(19) as our solution
formula we have tacitly assumed periodic boundary conditions for the Poisson equation.

HEF g ) ~ |w

3. SOLUTION CONCEPTS FOR THE POISSON EQUATION
In this section we discuss different possibilities of defining a unique height hmection. Essentially
our approach consists in minimizing some norm of the solution provided that it also satisfies the
Poisson equation. In particular we consider the L*- and H'-norms. We also show how these
two optimization problems may be reformulated as boundary value problems for the hiharmonic
equation. Note that the corresponding Poisson problem is well-posed unless o = 1.
In the domain 2 for the Poisson equation we consider the following boundary value problems

Au=f, zef (20)

with the Dirichlet boundary condition
w=g on o0, (21)

or the Neumann boundary conditions
Vu-r=h on a0 (22)

where 1+ is the outer unit normal vector to 992,
The boundary operators are independent of any particular choice of orientation for the
rectangular coordinate systems. Finally, for {2 a rectangular region in, e.g., the plane

D={{z.y):a<z<b c<y<d} (23)
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there may be the following boundary conditions
wla,y) = ulby), ulz,c)=ulzx d), (24)
or the periodic boundary conditions
uz(a,y) = uz(b,y), uy(x.c) = uy(z,d). (25)

Provided g is smooth enough boundary conditions (21) define a unique solution of Eq. (20).
For (22) and (25) the solution is determined up to a constant. It is also possible to use different
mixtures of these three types of boundary conditions. Note that for cases (22) and (25) the
following consistency conditions must hold, respectively:

ffd:::f hds and f_,f'dl:r:ﬂ.
i g i1

We now consider a different way to select a solution to Eq. (20). Here we use a criterion
function and optimize this eriterion over the set of solutions to the Poisson equation. Scattering
model of Section 2 shows the physical interpretation of function uir, y) is a surface function. We
need to pick out the smoothest surface (in some sense) that fulfills Eq. (20). using the Sobolev
space norms as criterion functions. Denote by Vi ; the following set:

Vii={uec H(Q): Au=f, fe L}()},i=0,1,2, (26)

where H(0)) = L2(}). The equality Au = f is to be interpreted in the sense of distributions,
ie.,

Definition 4. A solution of the Poisson equation (20) in Q is a function u € HY($}) such that
the following integral identify holds:

f‘uﬂgﬂdr=/ fedz, Yy e Cp®(Q).
0 i1

Lemma 1. Vy; is a closed, conver and nonempty set of H 10).

Let & be a multi-index and & > 0 a given parameter. We consider the following optimization
problems:

Inlu) = uun f|ui dr, (27)

uely g
I = mil 2dx + " u|? dx 28
u) = B ;1‘\[ |l ,d'lf Z | u|= dx (28)
=1
Theorem 1. Problems (27) and (28) have unique solutions uy and uy, respectively.

From problems (27) and (28) we have the following results characterizing the solutions.

1
Theorem 2. Let u, = Av. For the solution ug of the problems (27), where v € H*(Q)N ;I (o)
is the unigque solution of the following biharmonic problem

{&21, =f on  f1, (29)

v=Avr=10 on  Jf.
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Theorem 3. Let uy = Av. For the solution uy of the problems (28). where v € H2(1Y) is the
unigue solulion in the class {v» € HY(2) : Ay € HY )} of the followring biharmonic problem

M2y = f in £,
30
{I‘ = SAv, Ve-r=0 o G0 (30)

We conclude this section by a theorem relating the solution of problems (27) and (28). First
we recall the following definition.

Definition 5. 2 C EB" is called star-shaped if there exisls xg € 2 such that for all x € L} fthe set
{teR: =g+ tlxr—xg) €2} is an interval

Theorem 4. Assume that 2 C R" is open, bounded and star-shaped. If uy 5, € HY(11) denotes
the solution of problem (28) with the parameter 1 = 0, and if ug £ L*(0)) denotes the solution
of problem (27), then

Uy g, —F Mg AN LAy as & —0+.

The proof of Theorems 1-4 is carried out in the same way as it was done for other boundary
value problems in the article of the authors [27].

4. APPLICATIONS

As applications, in [23], [26], the eigenvalue problems of the symmetric tensor-block matrix of any
even rank and sizes 2 = 2 is studied. Some definitions and theorems are formulated concerning the
tensor-block matrix. Formulas expressing the classical invariants of the tensor-block matrix of
any even rank and sizes 2 = 2 through the first invariants of the powers of this tensor-block matrix
and the canonical representation of the tensor-block matrix are given. Besides, a classification
of the micro-polar linear elastic anisotropic bodies that do not have a center of symmetry is
given. In [24], some questions about the parametrization of three-dimensional thin body with
one small size under an arbitrary base surface and the changing of transverse coordinate from —1
to 1 are considered. The vector parametric equation of the thin body domain is given. Note the
paper [25], where the author considers questions on the decomposition of the initial boundary
value problems of elasticity theory and thin bodies for some anisotropic media, and from three-
dimensional decomposed initial boundary value problems the corresponding decomposed initial
boundary value problems for the theory of thin bodies are obtained. In [22] the expression is
presented for the propagation velocities of waves of a certain medinm through the eigenvalues
of the material tensors, as well as expressions for the propagation velocities of waves for a
micro-polar medinm with anisotropy and isotropic micro-polar material are obtained.
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